

Up to 400°C / 750°F and 50 bar(g) / 725 psi Inspectable design for high safety requirements

Non elastomeric gaskets offer a wide resistance range

Welded Plate Heat Exchanger

KELVION K°BLOC

PRINCIPLE

MAIN DESIGN ELEMENTS

PLATE CORRUGATIONS

SPECIFICATIONS 180 cm **BT20 BT30 BT40 BT75 BT120 BT50** 0.061 m² 0.108 m² 0.164 m² 0.270 m² 0.639 m² 1.720 m² SURFACE / PLATE 0.66 ft² 1.16 ft² 1.77 ft² 2.91 ft² 6.88 ft² 18.51 ft² 200 x 200 mm 300 x 300 mm 400 x 400 mm 500 x 500 mm 750 x 750 mm 1200 x 1200 mm PLATE DIMENSION 7.9 x 7.9 " 11.8 x 11.8 " 15.7 x 15.7 " 19.7 x 19.7 " 29.5 x 29.5 " 47.2 x 47.2 " 1824 mm 2092 mm 818 mm 1643 mm 3386 mm 3586 mm MAX. UNIT HEIGHT 32.2 " 64.7 " 71.8 " 82.4 " 133.3 " 141.2 " 50 - 150 DN 50 - 250 DN 50 - 300 DN 50 - 400 DN 80 - 600 DN 150 - 900 DN CONNECTION SIZES 2 - 6 " 2 - 10 " 2 - 12 " 2 - 16 " 3 - 24 " 6 - 36 " 100 200 240 300 500 MAX. PLATE AMOUNT 500

4

PRESSURE AND TEMPERATURE

50 bar 725 PSI

400°C

750°F

K°BLOC | RELIABILITY REFINED

- K°Bloc is the result of decades of experience with demanding applications, more than 30 years of welding expertise and a commitment to continuous product improvement.
- Now this fully welded plate heat exchanger has been refined to further enhance its reliability and efficiency. Designed and made in Germany, K°Bloc plays a leading role in Kelvion's package of sustainable solutions, working across a broad range of liquids, temperatures and pressures.
- K°Bloc is available in various materials and 2 different plate corrugations. The unique comb technology and the reinforced corner design makes it suitable for high temperature and pressure process applications up to 50 barg and 400°C.
- K°Bloc perfectly suits your demands for various applications.
- Efficient, reliable operation and low maintenance day after day, year after year.
 High Corrosion Lower Flex
 FIGH CORROSION MAINTENANCE CONTRACT

K°BLOC | RELIABILITY REFINED

TURBULENT FLOW

HEAT RECOVERY

DEBOTTLE-NECKING

HEAT TRANSFER

HIGH EFFICIENCY

TURBULENT FLOW

CHEVRON CORRUGATION

Higher Heat Transfer Efficiency

DOUBLE DIMPLE CORRUGATION

Higher Cleanability

TURBULENT FLOW

- Higher k-values due to corrugation
- ► Self cleaning effect → Less fouling, less cleaning
- ► 5mm channel gap → Turbulent flow also with smaller flow velocities
- High Shear Stress: 3-10 times higher than conventional Shell & Tube Heat Exchangers

BETTER HEAT TRANSFER DUE TO HIGHER TURBULENCE

HEAT RECOVERY LMTD

- Need to find a better balance between CAPEX and OPEX
- ► Improve process heat integration compared with conventional heat transfer technologies → high CAPEX & TIC
- Corrugated plate heat exchangers enhancing heat recovery without impacting severely CAPEX
- Higher turbulence allows higher heat transfer coefficients

HEAT RECOMERTE VS LOODST UNITS

DEBOTTLENECKING

- Capacity expansion project for ammonia plant but limited in gas cleaning section.
- Old set up in the gas cleaning section based on 4 Shell & Tubes + 1 stand-by unit
- Existing set of S&Ts unable to handle higher capacity with same heat recovery
- Process licensor decision to add additional heat exchangers but space constraints
- ► K°Bloc was unique solution:
 - To handle the additional capacity with limited space requirements
 - To find the best balance between limited CAPEX investment and reduced total install cost (TIC)

	K°BLOC	SHELL & TUBE
Quantity	1	4+1
Dimensions [m]	2.8 x 1.8 x 1.8	5 x 3 x 4
Empty Weight [kg]	35,380	70,000

BETTER HEAT TRANSFER

- New investment on VGO hydrotreating unit
- CAPEX and space constraints for conventional technologies
- ► High heat integration requirement to reduce energy consumption
- Conventional solution based on 5 S&Ts in series
- K°Bloc was unique solution:
- One K°Bloc able to perform instead of 5 units in series
- Same heat recovery, lower CAPEX and footprint
- Much lower pressure drop requirements for K°Bloc
- ► Reduce TIC for the new plant

SHELL & TUBE K°BLOC Hot Side Cold Side Hot Side Cold Side 371,0 / 266,0 246,9/343,3 Temperature 371,0 / 266,0 247/343 0.75 Pressure drop [bar] 0.5 x 5 0.5 x 5 1.0 318.2 Surface total [m²] 820.6 0.7 x 6.1 (x 5 Pcs.) 1.9 x 1.9 Size [m] Pcs. 5 1

VS

CORNER

DESIGN

ROBUST & RELIABLE

LINERS

СОМВ

WELDING & NDE

2

CORNER DESIGN

- Strong connection between plate pack and pressure vessel
- Robust Corner design for longer lifetime and reliable operation up to 50 barg

PRE-COMPRESSION PLATE PACK

- Under pressure heat transfer plates react elastic and breathing may occur.
- To avoid this, precompression of plate pack is required.
- With pre-compression plates are in perfect contact

COMB

- 3 mm comb design provides a boost on robustness of the most crucial edge area within our K°Bloc
- Comb material not weakened by tremendous cold forming steps
- Welded with support of filler metal
- No crossing welds in critical area.
- Up to 5K/min as temperature change rate ensuring reliable operation for the most critical conditions

COMB

Column Liner

Plate pack with column liner:

- ► One-piece column liner
- ▶ 100% metal support: Comb supports entire plate pack
- ► All welds are accessible
- ▶ 2 to 3 mm liner thickness for crucial transfer from plate pack forces to pressure bearing vessel
- Better support of sealing surface
- Our one-piece column liner combined with unique K°Bloc comb design offers the highest reliability for most challenging conditions

WELDING

AUTOMATIC TIG weld from plate to plate

MANUAL TIG weld from plate pack to comb and liners

TIG also known as GTAW TIG = Tungsten Inert Gas (Welding) GTAW = Gas Tungsten Arc Welding

WELDING

ADVANTAGES OF KELVION'S CONSTRUCTION:

- ► Perfect combination of welding and construction
- Construction and welding allows pre-compression of plate pack
 - ► The results are metal to metal contact points
 - ► No movement possible
 - Higher corrosion resistance
- More material at the welding point
 - Allows reparability
 - Allows inspectability (NDE)

X-RAY TESTING (NDE)

- Possibility of X-ray at cassette welding
- X-Ray on pressure vessel set on welds
- Non-Destructive

MATERIALS

WELDING Experience

REDUCE Capex

CORROSION RESISTANCE

HEAT RECOVERY FROM OVHDS PREFLASH

- Case example: Western European Refinery
- Addition to a new Preflash column due to feedstock changes (2017 revamp)
- ► 2 x K°Bloc BT120 | C276 plate material working in parallel
- Customer choice on higher grade material for K°Bloc
- ▶ Higher corrosion resistance at lower CAPEX compared to Shell & Tube
- ► Best balance between low CAPEX, high efficiency and no corrosion risk

	OVHDS FROM PREFLASH	CRUDE OIL	
Flow Rate	69.250 kg/h (60% condensation)	780.250 kg/h	
Temperature program	$83^{\circ}C \rightarrow 45^{\circ}C$	$24,9^{\circ}C \rightarrow 40,4^{\circ}C$	
Pressure drop	$\Delta P = 0.0126 \text{ bar}$	$\Delta P = 0.95 \text{ bar}$	
Design Condition	27,9/FV barg / 0/170°C	36,3/FV barg / 0/170°C	
Heat duty	5,292	Gcal/h	ON PIED

MATERIALS

ТҮРЕ	AISI	TRADE NAME	
1.4306	304L		\checkmark
1.4404	316L		V
1.4547	S31254	SMO254	V
1.4539	904L		\checkmark
2.4068	N02201	Nickel 201	\checkmark
2.4602	N06022	Alloy C22	\checkmark
2.4675	N06200	Alloy C2000	\checkmark
2.4819	N10276	Alloy C276	
3.7025	B265 Gr1	Titan Gr.1	

Our K°Bloc is available in various materials for a wide range of different applications

- Standard Plate Materials
- ✓ Further Plate Materials

Other materials are available upon request

WELDING EXPERIENCE

- 3 decades of welding expertise on all special alloys ensure a long lifetime
- Sustainable, high quality welds
- ► TIG (GTAW) Welding
 - Just one welding process for complete plate bundle
 - State of the art technology
 - Process controlled and reliable
 - Available all over the world
- Automized plate welding

CAPEX REDUCTION

- Heat integration project
- Due to corrosion, material upgrading required
- Solution based on conventional S&Ts not able to fulfil a good return on investment
- ▶ Requirement on tube material upgrading to DUPLEX → too high CAPEX for S&Ts
- K°Bloc was unique solution:
 - To handle the additional required heat recovery with limited space
 - Reduce CAPEX and TIC and match material requirement (SMO254 plates)

	ATMOSPHERIC RESIDUE	CRUDE OIL
Flow Rate	363.900 kg/h	651.200 kg/h
Temperature program	$355,5^\circ C \rightarrow 263,5^\circ C$	$213,5^\circ C \rightarrow 267,5^\circ C$
Pressure drop	$\Delta P = 1,71 \text{ bar}$	∆P = 1,63 bar
Design Condition	21,5/FV barg / 0/383°C	28,9/FV barg / 0/285°C
Heat duty	22,27 Gcal/h	

APPROXIMATELY 2.5 x LESS CAPEX FOR K°BLOC

REPAIR-ABILITY

CLEANING

REDUCE Fouling

KELVION SERVICE

LOWER MAINTENANCE

LOWER MAINTENANCE

FOULING REDUCTION

- ► K°Bloc patterns boost turbulence (longer uptime)
- ▶ K°Bloc Double Dimple able to handle higher solid content
- Turbulent Flow maximises shear stress (reduce fouling rates)

CLEANING

- Mechanical Cleaning by hydroblasting (removable covers)
- Chemical Cleaning (CIP): Less cleaning agent because of smaller volume
- Minimum space needed for dismantling
- ▶ Double Dimple provides high cleanability for the toughest fouling media

INSPECTION

- ► Fully inspectable
- All welds accessible
- Baffles removable

REPAIRABILITY

- Repair possibility of comb welds, plate welds, liner welds and blocking channels in case of cracked plates by TIG due to direct access
- All channels accessable for cleaning and inspection purposes
- Changing of process parameters possible due to on site adjustment (Baffle location)
- All welds accessible and all marked parts repairable

CLEANING

GLOBAL SERVICE NETWORK

Start-Up Services & Onsite Services Repairs, Overhauls & Maintenance

Spare Parts & Monitoring, Spare Part Solutions Consulting & Training

Upgrades & Replacements

ALL BRAND SERVICES

PERFORMANCE AGREEMENTS

service@kelvion.com www.kelvion.com/service

LOW FOOTPRINT

BAFFLES

APPLICATION VERSATILITY

HEAT RECOVERY

FLEXIBLE & COMPACT

180 cm **BT20 BT30 BT40 BT50 BT75 BT120** 0,1 m² 0,2 m² 0,4 m² 0,5 m² FOOTPRINT 1,1 m² 2,7 m² 496 mm 818 mm 1643 mm 1824 mm 2092 mm 3386 mm 3586 mm MAX. UNIT HEIGHT 32.2 " 64.7 " 71.8 " 82.4 " 133.3 " 141.2 " 50 - 150 DN 50 - 250 DN 50 - 300 DN 50 - 400 DN 80 - 600 DN 150 - 900 DN CONNECTION SIZES 2 - 6 " 2 - 10 " 2 - 12 " 2 - 16 " 3 - 24 " 6 - 36 " MAX. PLATE AMOUNT 100 200 240 300 500 500

SPECIFICATIONS

BAFFLES

WHY IS A BAFFLE REQUIRED?

Baffles allow multi pass designs for thermal plate length extension

FUNCTION AND FACTS

- Odd pass designs have inlet connection on one panel and the outlet connection on opposite panel
- Even pass designs have inlet and outlet connections on one panel
- Pass configuration allows dealing with non symmetrical flows

BAFFLES

1-Pass

3-Pass

4-Pass

BAFFLES

Horizontal for Condensation Horizontal for Evaporation

3 Horizontal (2 Outlets) for separation or condensation with inert gas.

4 Vertical

for Liquid-Liquid and Multipass Condensers and Evaporators

APPLICATION VERSATILITY

OIL & GAS

- Gas Dehydration
- Gas Sweetening
- Crude Oil Stabilization
- Crude Oil Desalting
- Crude Oil Dehydration
- Gas Fractionation
- NGL Recovery

CHEMICALS

- Olefins (Ethylene, EO-EG)
- Aromatics
 - Sodium Hydroxide (NaOH)
 - Polymers
 - Caustic Evaporation
- ► Methanol
 - Chlorine

OTHER

- Pulp and Paper
- Urea
- Ammonia
- Nitric Acid
- Phenol
- Bitumen

REFINERY

- Crude Oil Preheating (CDU)
- Gas Sweetening
- LPG Recovery
- Fluid Catalytic Cracking
- Hydro Conversion Processes
- Sour Water Stripping
- Desalter
- Alkylation
- Isomeritation

AGRICULTURAL NATURAL RESOURCES

- Refining
- Biodiesel
- Bioethanol
- Bio Refineries
- Deodorization

MEDIA VERSATILITY

- ► Fresh Water
- Sea Water
- Sulfuric Acid
- ► Lean/Rich TEG
- Rendered Animal Fat
- ► Brine
- Sodium Hydroxide
- Ethanol
- Biodiesel
- Lean/Rich Amine
- Glycol Blends
- Ammonia/Water Blends
- Steam
- Crude Oil

REBOILER

Gas Sweetening Process with K°Blo	С
-----------------------------------	---

	K°Bloc Reboiler	Shell & Tube Reboiler
Operating temperature	Limited to about 650°F	Unlimited
Operating pressure	Limited to about 500 psig	Unlimited
Fouling tendency	Low	Moderate to high
Capital cost	Low	High
Advantages	 More compact Lower CAPEX and OPEX High heat transfer coefficients (2 - 4 times STHE designs) Lower fouling Fluid residence time is very short, less solvent degradation Short flow path, smaller height to drive the flow Closer temperature approach allows lower pressure steam Better energy efficiency 	 Design flexibility (kettle, E-shell etc.) Ability to separate flow Higher flexibility in steam operating conditions (higher pressure possible) Well-known, familiar technology
Disadvantages	 Limited operating conditions (temperature, pressure) Sensitive to changes in operating conditions Not suitable for very low vacuum services, pressure drop issue 	 Higher capital and operating costs Power and maintenance Typically constructed of carbon steel, leading to corrosion

SOUR WATER STRIPPER

MATERIALS AND CONSTRUCTION

Heat Transfer Plate:

- 316L Stainless
- SMO 254
- Nickel and Nickel alloys
- · Titanium, and others on request

Other Media-Contacting Parts:

All other media-contacting parts are made from high-grade alloys, according to the application.

Port Connection:

Raised Face Welded Neck Flange as standard. Others available on request.

Pressure Plate:

SA516 Grade 60 or 70, depending on code.

PERFORMANCE

Design Pressure:

Maximum standard design pressure is 500 psig (35 barg). Higher pressures are available on request.

Design Temperature:

Maximum standard design temperature is 662°F (350°C). Minimum standard design temperature is -20°F (-28°C). Higher temperatures are available on request.

ENHANCED HEAT RECOVERY

EASTERN EUROPEAN REFINERY

165 000 bpd (8.1 mtpa) / Russian and alternative crude oil processing

Crude distillation unit revamp Improved process heat integration Avoid corrosion risk

1 K°Bloc BT75 C276 plate material

Overhead vapor from CDU	Crude Oil
40252 kg/h (full condensation)	262446 kg/h
132.39°C -> 40°C	14.33°C -> 54.66°C
$\Delta P = 0.02 \text{ bar}$	$\Delta P = 0.11 \text{ bar}$
Design Condition 1 barg / -20/170°C	Design Condition 30 barg / -20/170°C
5.65	MW

MADE IN GERMANY

100 YEARS EXPERIENCE

GLOBAL BUT LOCAL

TRUSTABLE PARTNER

DESIGNED AND MADE IN GERMANY

Your global partner providing all industries with trusted **Plate Heat Exchanger Technology** and Service where Expertise is needed.

RELIABLE. SUSTAINABLE. EFFICIENT.

WELDING EXPERIENCE

YEARS OF EXPERTISE

EMBRACE OUR PAST. BUILD OUR FUTURE.

KELVION – A TRIBUTE TO LORD KELVIN (1824 - 1907)

OUR LOGO – INSPIRED FROM THE SCHEMATIC FOR HEAT EXCHANGER

5,000 EMPLOYEES -WORLDWIDE

***** ************************* ********** ********** ************************

YOUR MARKETS ARE **OUR MARKETS**

HVAC

Transportation

Marine

67 BRANCHES AND SALES PARTNERS WORLDWIDE

KELVION HAS A LONG HISTORY

2015 With the new name, the former GEA Heat Exchangers is writing its own history as Kelvion. 2014 GEA sells the Heat Exchangers Segment to Triton. 2010 Reorganization of GEA's 9 Divisions into technologically distinct Segments. The largest segment is the Heat Exchangers Segment.

1999

1920

In April 1999, GEA was acquired by mg technologies AG

Foundation of GEA in Bochum by Otto Happel sen. (Born 1882)

OUR MANUFACTURING CAPABILITIES

GERMANY

Herne (MCS)

- Closed Circuit Coolers
- Engine Air & Gas Coolers

Monzingen (MCS)

- Aluminium Blocs
- Shell & Tube Double Safety
- Shell & Tube Single
- Transformer Oil Air Cooler
- Transformer Oil Water Coolers & Pumps

Nobitz-Wilchwitz (PHE)

Brazed Plate Heat Exchangers

Sarstedt (PHE)

- Fully Welded Plate Heat Exchangers
 Gasketed Plate Heat Exchangers

CZECH REPUBLIC

Nymburk (RT)

- Commercial Air Coolers
- Customized Air Coolers

FRANCE Winales (RT)

- Cooling Towers
- Dry Coolers
- Radiators
- Shell & Tube Single
- Transformer Oil Air Cooler

Nantes (PES)

- Air Cooled Condensers
- Air Fin Coolers Alu
- Diffusion Bonded Heat Exchangers

POI AND

- Opole (PES)
- Air Drvers & Economizers
- Air Fin Coolers Alu
- Air Fin Coolers HDG
- Desublimators
- ► Fully Welded Plate Heat Exchangers
- Shell & Tube Process
- Shell & Tube Single
- Transformer Oil Air Cooler

Świebodzice (RT)

- Coils
- Commercial Air Coolers
- Condensers
- Drv Coolers
- Engine Air & Gas Coolers

Gasketed Plate Heat Exchangers

Radiators

SWEDEN

Ystad (PHE)

- NETHERLANDS Almere (MCS)
- Engine Air & Gas Coolers
- Shell & Tube Double Safety
- Shell & Tube Single

Doetinchem (PES)

- Closed-Loop Cooling Towers
- Modular Cooling Towers

Sint Maartensdijk (RT)

Customized Air Coolers

SPAIN

- Igorre (PES)
- Air Drvers & Economizers
- Air Fin Coolers Alu
- Air Fin Coolers HDG
- Shell & Tube Process
- Shell & Tube Steam

UNITED KINGDOM

- Fareham (RT)
- Commercial Air Coolers
- Condensers

- Customized Air Coolers
- Drv Coolers
- Radiators

SOUTH AFRICA

- Germiston (PES) [Service Factory]
 - Air Fin Coolers
 - Cooling Towers
 - ► Field-Erected Mechanical Draft
 - Petrochemical Systems

CHINA Wuhu (MCS)

- ► Air Dryers & Economizers
- Brazed Plate Heat Exchangers
 Gasketed Plate Heat Exchangers
- Closed Circuit Coolers
- Commercial Air Coolers
- Dry Coolers
- Engine Air & Gas Coolers
- Radiators
- Shell & Tube Double Safety
- Transformer Oil Air Cooler
- Transformer Oil Water Coolers & Pumps

47

UNITED STATES

Air Dryers & Economizers

Burkesville (MCS) [Rocore]

Shell & Tube Single

Aluminium Blocs

BRA7II

Franklin (MCS) [Rocore]

Closed Circuit Coolers

Franco da Rocha (PES)

Closed Circuit Coolers

Shell & Tube Process

Shell & Tube Steam

Air Fin Coolers Alu

Air Drvers & Economizers

Gasketed Plate Heat Exchangers

Brazed Plate Heat Exchangers
Gasketed Plate Heat Exchange

Air Fin Coolers Alu

Catoosa (PES)

Knoxville (RT)

Dry Coolers

Changshu (PES)

- Air Cooled Condensers
- Air Fin Coolers Alu
- Shell & Tube Steam

INDIA

 $(\mathbf{\hat{s}})$

- Pune (PHE)
- Air Cooled Condensers

Shell & Tube Steam

Doha (PES) [Service Factory]

Air Cooled Condensers

Air Fin Coolers

Shell & Tube

Air Drvers & Economizers Closed Circuit Coolers

► Fully Welded Plate Heat Exchangers

eted Plate Heat Exchangers

Air Fin Coolers Alu Aluminium Blocs

Desublimators

Gaske

QATAR

Radiators

YOUR MARKETS ARE OUR MARKETS

CONTACT

www.kelvion.com

©2018 Kelvion Holding GmbH. All rights reserved.

OUR VISION

HEAT X-CHANGING THE WORLD WITH SUSTAINABLE ENGINEERED SOLUTIONS